DIFFERENTIATION FORMULAS

Some Useful Rules				
Product Rule	$\frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}$			
Division Rule v≠0	d dx	$\left(\frac{u}{v}\right) = \frac{v\left(\frac{du}{dx}\right) - u\left(\frac{dv}{dx}\right)}{v^2}$		
Chain Rule	$\frac{d}{dx}(f(g(x))) = f'(g(x)) \cdot g'(x)$			
Addition/ Subtraction	$\frac{d}{dx} (f(x) \pm g(x)) = \frac{d}{dx} (f(x)) \pm \frac{d}{dx} (g(x))$			
Constant Rule	$\frac{d}{dx} (k f(x)) = k \frac{d}{dx} (f(x))$			
Some Standard Derivatives				
$\frac{d}{dx}$ (constant) = 0		$\frac{d}{dx}(x^n) = nx^{n-1}$		
$\frac{d}{dx} (\log_e x) = \frac{1}{x}$		$\frac{d}{dx}(e^x) = e^x$		
$\frac{d}{dx}(\log_a x) = \frac{1}{x \log_e a}$		$\frac{d}{dx}(a^x) = a^x \log_e a$		

$\frac{d}{dx}(\cos x) = -\sin x$	$\frac{d}{dx}(\sin x) = \cos x$	
$\frac{d}{dx} (\tan x) = \sec^2 x$	$\frac{d}{dx}(\cot x) = -\csc^2 x$	
$\frac{d}{dx}$ (sec x) = sec x tan x	$\frac{d}{dx}(\csc x) = -\csc x$ •cot x	
$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$	$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$	
$\frac{d}{dx}(tan^{-1}x) = \frac{1}{1+x^2}$	$\frac{d}{dx}\left(\cot^{-1}x\right) = -\frac{1}{1+x^2}$	
$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{ x \sqrt{x^2 - 1}}$	$\frac{d}{dx}\left(cosec^{-1}x\right) = \frac{-1}{\mid x \mid \sqrt{x^2 - 1}}$	
$\frac{d}{dx}(\sinh x) = \cosh x$	$\frac{d}{dx}$ (coshx) = sinhx	
$\frac{d}{dx}(\tanh x) = \operatorname{sech}^2 x$	$\frac{d}{dx}(cothx) = -cosech^2x$	
$\frac{d}{dx}$ (sechx) = - sechx tanhx		

$$\frac{d}{dx}$$
 (sechx) = - sechx tanhx

$$\frac{d}{dx}$$
 (cosechx) = -cosechx cothx

$\frac{d}{dx} \left(\sinh^{-1} x \right) = \frac{1}{\sqrt{1 + x^2}}$		$\frac{d}{dx}(\cosh^{-1}x) = \frac{1}{\sqrt{x^2 - 1}}$
$\frac{d}{dx} \left(\tanh^{-1} x \right) = \frac{1}{1 - x^2}$		$\frac{d}{dx}\left(\coth^{-1}x\right) = \frac{1}{x^2 - 1}$
$\frac{d}{dx} (\operatorname{sech}^{-1} x) = -\frac{1}{ x \sqrt{1 - x^2}}$		$\frac{d}{dx} (cosech^{-1}x) = \frac{-1}{ x \sqrt{x^2 + 1}}$
$\frac{d}{dx} x = \frac{x}{ x } (x \neq 0)$		$\frac{d}{dx}[x] = 0, \forall x \in -I$
$\frac{d}{dx}\log x = \frac{1}{x}$		$\frac{d}{dx}\left\{x\right\}=1,\ \forall\ x\inR$
So	me Important	Substitutions
$\sqrt{a^2 - x^2}$	me Important • x = a sinθ	
	11.11.11	or a cosθ
$\sqrt{a^2-x^2}$	• x = a sinθ	or a cosθ or a cotθ
$\sqrt{a^2 - x^2}$ $\sqrt{x^2 + a^2}$	x = a sinθx = a tan θ	or a cosθ or a cotθ or a cosecθ
$ \sqrt{a^2 - x^2} $ $ \sqrt{x^2 + a^2} $ $ \sqrt{x^2 - a^2} $	 x = a sinθ x = a tan θ x = a sec θ 	or a cosθ or a cotθ or a cosecθ
$ \sqrt{a^2 - x^2} $ $ \sqrt{x^2 + a^2} $ $ \sqrt{x^2 - a^2} $ $ \sqrt{\frac{a - x}{a + x}} $	 x = a sinθ x = a tan θ x = a sec θ x = a cos 2 	or a cosθ or a cotθ or a cosecθ e θ – b tan² θ

DIFFERENTIATION OF IMPLICIT FUNCTION

 When in a function the dependent variable is not explicitly isolated on either side of the equation

Working Method

- Every term of f(x, y) = 0 should be differentiated with respect to x
- The value of dy/dx should be obtained by rearranging the terms.

DIFFERENTIATION OF PARAMETRIC FORM

if x = f(t) and y = g(t), then
$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$$

Example, $x = a(\theta + \sin\theta)$ and $y = a(1 - \cos\theta)$

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{a\sin\theta}{a(1+\cos\theta)} = \tan\frac{\theta}{2}$$

76

